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INTRODUCTION

This is essentially a progress report on a theoretical

invesuigation of the propagation of transient waves in a random

medium. The emphasis in this study is on applications to

sonic-boom propagation, particularly as regards the effect of
a_mospheric turbulence on the sonic-boom waveform. The analysis

is general, however, and is applicable to other types of waves
besides sonic-boom waves.

The phenomenon of primary concern in this investigation is

the finestructure of the wave. The first figure shows what is

meant by the finestructure.

NOTE: Research supported by NASA Langley Research Center
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I. PRELIMINARIES

The uppermost sketch shows a typical transient waveform as

it might look if observed under ideal conditions; i.e., in the
absence of scattering, refraction, or any other mechanisms which

might act to distort the waveform. This is what I call the
incident wave.

When a wave propagates in a real medium, such as the

atmosphere, a random high-frequency structure, called the

finestructure, qeneral!y apears on the waveform, giving it the

appearance shown in the bottom sketch° The finestructure is

defined formally, at least insofar as the present investigation
is concerned, as the difference between the observed wave and its

ensemble average, and generally has an appearance much like that
shown in the middle sketch°

The finestructure is believed to arise as a result of

scattering and redistribution of wave energy by the random

inhomogeneities of the medium° The finestructure is p@rticularly

important in connection with sonic-boom propagation, slnce the

strong high-freql/ency component that often appears near the front

of the N-wave may contribute appreciably to the perceived
noisiness of the sonic boom.

The finestructure is most conveniently characterized by its

statistical properties, such as the variance, the standard
deviation, the correlation function, and the spectral density

function. The spectral density function is the quantity that is

most relevant to the question of annoyance, particularly as
regards sonic-boom waves, slnce it contains information on the

frequency content of the finestruc_ure. The spectral density

function is the quantity of primary interest in this study.

Inciden! Wave
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2. FORMULATION

The investigation is based on a relatively simple
mathematical model. In this model the medium is assumed to be

one-dimensional, with properties that vary only with the spatial
coordinate; i.e., the medium is assumed to be independent of

time. The medium is also assumed to be quiescent, which means

that only thermal scattering is being considered. (Mechanical

turbulence, which gives rise to inertial scattering, is ignored.)

In addition, the medium is assumed to be non-dissipative.

Non-linear effects are disregarded.

The starting point of the analysis is the time-dependent

scalar wave equation in one spatial dimension x. (Note that

derivatives are denoted by superscripts rather than by

subscripts.) Here w is the wave function; f is the source term.

The sound speed c., which is assumed to be a random function
of x, is written as shown, where c is a constant reference speed

and _ is a stationary random function of x having zero mean
and unit variance. (The angle brackets denote an ensemble

average.) The paramter c is the standard deviation of the index
of refraction of the medium, and is assumed to be small.

It should be pointed out that, in the atmosphere, the
standard deviation of the acoustic index of refraction is

typically about one part in one thousand, so that the assumption

that _ is small, which is to say, the assumption that the medium

is only weakly inhomogeneous, is appropriate for the study of

sonic-boom propagation.

The initial conditions reflect the assumption _hat the

medium is at rest prior to the initial disturbance.

c-_2w tt-w xx-f; t >0, --0o <x <+ oo

C

c,(x) -- 1 -- e_u(x)' < tt >-- O, < tt 2 >---- 1

o) = o) = o

J
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3. PERTURBATION METHOD

The assumption of a weakly inhomogeneous medium allows the

problem to be solved by a perturbation method. To begin,
assume that the wave function w has an expansion (which may be

asymptotic) in powers ofc By substituting this

expansion back into the wave equation, equations for the

coefficients w 0, w I, etc. are derived in the usual way. The

first two such equations, for w 0 and Wl, are shown, it
turns out to be sufficient to carry out this procedure only as

far as the first-order term (the w I term). The wave function w

is then approximated by the first two terms of the expansion, as
indicated on the last line.

Instead of specifying the source term f, it turns out to be
more convenient to specify the zeroth-order wave function; i.e.,

the w 0 term, which corresponds to the incident wave. It is
written as shown, where h, which is an arbitrary function,
defines the waveform of the incident wave.

Writing the incident wave in this form is equivalent

to specifying a source term that is concentrated a_ the

origin, having a time dependence determined by the function h.

With w 0 specified in terms of the function h, the right-hand
side of the equation for w I is determined, provided that _ is

regarded as a known function. That equation can be solved by the
method of characteristics. That method is well known, and

so will not be described here. Instead, let's

look next at how an expression for the correlation
function of the finestructure is derived, once an

expression for Wl has been obtained.

_U(X, _;_.)= WO(Z ,t)-k _Z11(Z, t) Jr_2W2(Z, _) +...

C--2Wl _ --_X: 2C-2#W_

woC ,t)=

w = wo + owl + 0(_ 2)
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4. CORRELATION FUNCTION

To get a general expression for the correlation function of

the finestructure, start with the expression for w and average
it, noting that the average of w I is zero. (The average of w I is

zero because it is linear in the random function_, which has

average zero.) Note that the average field differs from the
incident field by terms of order _2 .

Next, subtract to get an expression for _, the fluctuating

field, defined as the difference of w and its average. The

quantity _ corresponds to the finestructure. An expression for

the temporal correlation function of the finestructure at any
point x is then obtained by forming, at x, the product

of _ with itself at the two time values t I and t_.

The averaging procedure used here is not the usual ensemble

averaging. Instead, it's a travel-time-corrected averaging
procedure that I call asynchronous ensemble averaging. The

essential idea of the method is that, instead of measuring time

with respect to some universal reference time, such as the time

that the wave is emitted by the source, it is measured, for each
wave in the ensemble, relative to the time that that wave arrives

at the observer. The advantage of using• a travel-time-corrected

averaging procedure of this type is that it avoids certain

spurious effects that arise as a consequence of averaging over an

ensemble of waves that have become dispersed due to variations in

travel time among the different members of the ensemble.

A travel-time corrected averaging procedure similar to the

one used here was used by Allan Pierce in one of his papers on

sonic-boom propagation.

I should mention also that asynchronous averaging has the

effect of renormalizing the perturbation series for the wave
function, which results in the elimination of some secular terms

from the expression for the first-order field.

In order to apply asynchronous averaging in deriving an

expression for the correlation function of the finestructure, one

replaces t I by T + r, where _ is the travel time from the source

(the origin) to the observation point x, and r is the time
relative to the arrival time at which the observation is being

made. The variable t2 is replaced by T + r + s, where s denotes

the separation time between the two observation times. The

result is an expression for the correlation function of the
finestructure, which is denoted by K. Note that terms of order _

have been dropped from the expression for K.

The spectral density function is then obtained by taking the

cosine transform of K with respect to s.

(See next page.)
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CORRELATION FUNCTION

w = w0 + _wl + O(e 2)

< w > = w0 + O(e 2)

w- < w >- _ = ewa + O(c 2)

< _(_,ta)_(_,t2) > =_2 < _a(_,ta)_,_(x, t2) > +o(J)

tl=T+r; t2=T+r+s; r>O,s>O

K(x,r,s)=< _(X,T +r)_(X,T+r-t-s) >

--e 2<wl(x,T+r)wl(x,T+r+s) >
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5. GENERAL RESULTS

The result of the analysis sketched above is the general

expression shown for the correlation function of the

finestructure. The function 7 that appears in this formula is a

temporal correlation function that's related to the spatial
correlation function of the medium by the change of variable
indicated. The function h determines the waveform of the

incident wave, as discussed previously; the primes denote
derivatives. The lower limit of the second inner integral; i.e.,

_, is defined as shown.

This formula is valid provided that the propagation path

length x is much greater than the integral scale, or outer scale,

L, of the medium. (This condition is satisfied in virtually all

cases of practical interest.) Note also that this expression is

valid only for r positive. When r is negative, i.e., before the
wave has arrived, the correlation function is zero.

This formula, which expresses the correlation function of
the finestructure in terms of the incident waveform and the

correlation function of the medium (the last two quantities both

being arbitrary), is the main result of this investigation.

The spectral density function of the finestructure is

obtained by taking the cosine transform of K with respect to s
(the separation variable).

One point about this expression that's worth noting is that

it is independent of the propagation range x. The reason for

this is that, according to the theory, by the time the incident

wave has propagated a distance of the order of an outer scale
length into the medium the finestructure has become, in a

statistical sense, fully developed. Beyond this range, i.e., for

x >> L, there is, for all practical purposes, no further

evolution of the statistical properties of the finestructure.

The correlation function K is, however, strongly dependent

on the magnitude of the randomness of the medium, as is shown by
the presence of the term 62 on the right-hand side of this

expression.

Note also that the correlation function K depends on r (the

elapsed time since onset), as well as on s, the separation time.

The spectral density function of the finestructure will therefore

also depend on r. The correlation and spectral density functions

of the finestructure are thus time-dependent functions. This is
a consequence of the fact that the finestructure of a transient

signal is generally a non-stationary random process.

The formula shown expresses the function K as the sum of two
iterated integrals. Of these, the two inner integrals involve

only the function h. If that function has a sufficiently simple

form, then the inner integrals can be evaluated analytically,

after which only a pair of single integrals is left to deal with.

One case in which this type of simplification is feasible is
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when the incident wave has the form of a simple ramp function,
since then the function h is piecewise constant. The relevant
calculations have been carried out, and the results are shown on

the next figure. (This type of simplification is also feasible
when the incident wave has the form of an N-wave, but the
calculations for that case have not been done.)

GENERAL RESULTS

[/0/r1 e2 r h'
g(r,s) : -_ O'(_) (rl- _)h" (rl + s)drId_

; /; ]+ "r(_+ _) h' (,7- _)h' (_)and_
8

_ = max(O,(), x >> L,r>O,s>_O
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6. RAMP FUNCTION

The sketch shows the function h(t) for the case of a

ramp-function incident wave. The amplitude P and the rise time 6
are shown on the sketch, as are the two time values r and r+s at

which the finestructure is evaluated in order to form the

two-point correlation function. The results described here are

for the case in which the points r and r+s are both behind the

rise phase of the incident wave, as indicated. This is the case

of most practical importance.

As has been mentioned, the two inner integrals in the

expression for K shown on the previous vu-graph can, in this

case, be evaluated exactly. The result of that calculation is

the first equation shown. Note that, although K is written

generally as a function of both r and s, the right-hand side of

this expression is in fact independent of r, showing that the

finestructure is a stationary stochastic process in this case.

An expression for the spectral density function of the
finestruc_ure, denoted by D, is obtained by taking the cosine

transform of K with respect to s. The result is given by the

second equation° The function $ is the transform of 7.

Of these two quantities, the spectral density function;

• .e., D, is, as has already been emphasized, the quantity of

primary interest in this study. The expression for this quantity

will be examined more closely in a moment. First, however,

let's take a quick look at what happens to these two formulas in

the limit as 6 goes to zero, i.e., as the ramp function becomes a
step function.

The limiting forms of K and D, denoted by K0(s) and D0(m),
respectively, are easy to calculate, and are given by the last

two equations. The function K0(s) is then the correlation
function, while D0(m) is the spectral density function, of the

finestructure for the case in which the incident wave is a step
function.

It should be pointed out that no analytical problems arise

in calculating these limits. There is thus no problem with

singular behavior of the finestructure in the limit as the ramp-

function incident wave becomes a step function.

These last two formulas show that, when the incident wave is

a step function, the correlation function of the finestructure is
proportional to the correlation function of the medium, and,

similarly, the spectral density function of the finestructure is

proportional to the spectral density function of the medium.

When the incident wave has the form of a ramp function,
however, with a non-zero rise time, these simple relations no

longer obtain. This situation, particularly as regards the

spectral density function, will be examined in more detail in
the next section.
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RAMP FUNCTION

r ,'

6--+0:

h

P

° ' ° _- t

6 r r+s

c2p2 j_0 5K(r, s) -- 262 (6- _)[_(s- _) + 7(s + _)]d_

D(r,w) = e2p2 1- cos(6w)
(_)2 Z(_)

1 c2p2g(_, _)-_ _ 5(_)= Ko(_)

1 _2p2
D(r,w) -_ _ Z(w) = Do(w )
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7. RAMP FUNCTION (cont'd)

In order to exam!ne some of the implications of the result

obtained above for the ramp-function finestructure spectrum D,

it's convenmen_ to write the expression for that quantity mn the

form shown on the firs_ line. In this formula the function D O ms
the finestruc_ure spectrum for the case of zero rise time, i.e.,
for the snep-function inciden_ wave, as described above. The

function A determines how the finestructure spectrum differs from
D O when the rmse time 6 is non-zero.

The function A is sketched in the figure. Note thac it is

effectively zero when its argumen_ is greater than abou_ 2_. What
this means ms that (referring to the formula for D) the

fines_ructure spectrum ms effectively zero au all frequencies for
which 6w is greater than about 2_, or, what is equivalent, when

f, the frequency in Hz, is greater than about 1/6.

This result shows that, the greater the rise time of the

inciden_ wave, the less high-frequency energy there is in the

finestructure. A couple of examples of this effect, involving

paramener values typical of sonic-boom propagation, are shown:

When the rise tlme is one millisecond, there ms effectively no

energy in the finesuructure spectrum at frequencmes above about i
kHz. If the rise time is increased to two milliseconds, then the

lower limit of the frequency range for which the finestruc_ure

spectrum is devoid of energy drops to 500 Hz.

Note, however, that, since the function A is equal to unity

when its argument is equal to zero, the low-frequency portion of

the finestructure spectrum is relatively unaffected by changes in
the rise time.

Since it's generally the high-frequency portion of the

acoustic spectrum that's most annoying to the human ear, what
these results impl Y is that, at least for a ramp-function wave in

one dimension, increasing the rise time of the incident wave will

tend to reduce the annoyance associated with the finestructure.

Whether this result holds in three dimensions as well remains to

be seen, but if it does it has obvious implications as regards
the idea of shaping the sonic boom in order to reduce its
annoyance.

The results just described could, of course, be expressed
just as well in terms of time scales, rather than in terms of

frequency. Expressed in those terms, the results imply that a
ramp-function wave propagating in a random medium will contain

very little structure having time scales smaller than the rise

tmme. This prediction agrees with observations of sonic-boom and

other types of transient waves, which rarely show any appreciable
structure having time scales smaller than the rise tlme.
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RAMPFUNCTION (cont'd)

D(r,w) = A(6w) Do(w)

A(O) = 2
1 - cos 0

82

The function A(6w), and therefore the finestructure spectrum, is

effectively zero for 6_ >_ 2_, or f _ i/6.

Sonic boom: 6= .001 sec;f> 1000 Hz

= .002 sea; f_> 500 Hz

A(e)

:==>D(r, w) __ 0

2¢r 4_- 67r

0
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8. SUMMARY

The maln results of this investigation can be summarlzed as

follows. First, the approach described here has been found to

yield fairly concise, general expressions for the correlation and

spectral density functions of the finestruczure. Second, the

results for the case of a ramp-function incident wave agree
wlth the observation that the !mportant time scales associated

with the finestructure of sonic-boom and other types of _ransient

waves are generally comparable to, or greater than, the rise time.

Finally, the results (again for the ramp-function incident wave)

indicate that an increase in the rise time of the incident wave

is associated with a reduction in the high-frequency content of
the finestructure.

This last result, assuming that it holds in the

three-dimensional case as well, has implications as regards the

idea of shaping the sonic boom in order to reduce its annoyance.
It suggests that increasing the rise time of the sonic boom will
make it quieter, even in the presence of turbulence.
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